f(0)=3x^2+6x+3070

Simple and best practice solution for f(0)=3x^2+6x+3070 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for f(0)=3x^2+6x+3070 equation:


Simplifying
f(0) = 3x2 + 6x + 3070

Reorder the terms for easier multiplication:
0f = 3x2 + 6x + 3070

Anything times zero is zero.
0f = 3x2 + 6x + 3070

Reorder the terms:
0 = 3070 + 6x + 3x2

Solving
0 = 3070 + 6x + 3x2

Solving for variable 'x'.

Combine like terms: 0 + -3070 = -3070
-3070 + -6x + -3x2 = 3070 + 6x + 3x2 + -3070 + -6x + -3x2

Reorder the terms:
-3070 + -6x + -3x2 = 3070 + -3070 + 6x + -6x + 3x2 + -3x2

Combine like terms: 3070 + -3070 = 0
-3070 + -6x + -3x2 = 0 + 6x + -6x + 3x2 + -3x2
-3070 + -6x + -3x2 = 6x + -6x + 3x2 + -3x2

Combine like terms: 6x + -6x = 0
-3070 + -6x + -3x2 = 0 + 3x2 + -3x2
-3070 + -6x + -3x2 = 3x2 + -3x2

Combine like terms: 3x2 + -3x2 = 0
-3070 + -6x + -3x2 = 0

Factor out the Greatest Common Factor (GCF), '-1'.
-1(3070 + 6x + 3x2) = 0

Ignore the factor -1.

Subproblem 1

Set the factor '(3070 + 6x + 3x2)' equal to zero and attempt to solve: Simplifying 3070 + 6x + 3x2 = 0 Solving 3070 + 6x + 3x2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. 1023.333333 + 2x + x2 = 0 Move the constant term to the right: Add '-1023.333333' to each side of the equation. 1023.333333 + 2x + -1023.333333 + x2 = 0 + -1023.333333 Reorder the terms: 1023.333333 + -1023.333333 + 2x + x2 = 0 + -1023.333333 Combine like terms: 1023.333333 + -1023.333333 = 0.000000 0.000000 + 2x + x2 = 0 + -1023.333333 2x + x2 = 0 + -1023.333333 Combine like terms: 0 + -1023.333333 = -1023.333333 2x + x2 = -1023.333333 The x term is 2x. Take half its coefficient (1). Square it (1) and add it to both sides. Add '1' to each side of the equation. 2x + 1 + x2 = -1023.333333 + 1 Reorder the terms: 1 + 2x + x2 = -1023.333333 + 1 Combine like terms: -1023.333333 + 1 = -1022.333333 1 + 2x + x2 = -1022.333333 Factor a perfect square on the left side: (x + 1)(x + 1) = -1022.333333 Can't calculate square root of the right side. The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined.

See similar equations:

| 3x=x+(4x-12) | | 5=x(2x+3) | | 10x-(9x-4)=13 | | 3(f+3)=7+3f+6-f | | 4w^2=-12w | | 2(y+8)2+10=0 | | =3y^2+10y+3 | | 13-5x=-57 | | 2(6t-2)=24-2t | | x+(x+1)+(x+2)=250 | | -5(7p+4)= | | f(0)=.03x^2+.06x+30.7 | | 8(a+2)=5a+16+5a | | 2x^2+2x-168=0 | | 2ab+8c= | | f(x)=.03x^2+.06x+30.7 | | (x+1)+7=0 | | 9+81*(-96)-(4+2*5)= | | =x^2+14x+40 | | 3n^2+2n+5=0 | | -24=9x+4-5x | | .5xX=15000 | | N-11n=-5(5+10n)-5(1-5n) | | (3w-4)(5+w)=0 | | 2a+4b=84 | | 2loge(6x)=6 | | 5x+x-2=5x+4 | | 2x-5y-6=0 | | x+126=975 | | -4(u-9)(u-5)=0 | | -7=a/3 | | 4s^2+9=12x |

Equations solver categories